
Android	
 v.	
 Asthma	

or,	
 how	
 I	
 learned	
 to	
 stop	
 worrying	
 and	
 love	
 the	
 handheld	
 (sort	
 of)	

Brent Grossman
Advisor: Jason Leigh

Secondary: Robert Kenyon
December 2012

 2

Table	
 of	
 Contents	

Introduction	
 ...	
 3	

Project	
 System	
 Design	
 and	
 Structure	
 ..	
 4	

App	
 Implementation	
 ..	
 6	

Results	
 ...	
 10	

Conclusion	
 ...	
 18	

 3

Introduction	

Although a manageable condition with medical intervention, asthma is a chronic
respiratory disease known for its potentially life-threatening attacks that make breathing
difficult.i Recently, cell phone technology, along with healthcare workforce shortages and
the rising prevalence of chronic diseases, have converged and led to a number of mobile
health interventions to manage chronic disease, including asthma.1, 2

Dr. Gisele S. Mosnaim and her colleagues have been working on asthma applications
that specifically prioritize youth who live in the inner city and may experience higher
incidences of asthma, as well as morbidity and mortality related to asthma.1, 3 During the
first ADEPT study, the intervention consisted of MP3 players with celebrity-delivered
asthma adherence messages between music tracks. Those randomized to the
intervention demonstrated significantly increased asthma knowledge compared to
controls.1

The goal of this project is to develop an application that is avatar-based and will be a
catalyst for and measure behavior change (i.e., improved asthma medication adherence
compared to controls). An avatar as peer and coach has been demonstrated to serve as
an effective motivator of health behavior changes.4 Additionally, gaming, or apps that
encourage peer collaboration and competition, have also been demonstrably effective.5
Building on these evidence-based trajectories, this project aims to address the current
gap in asthma management applications for youth.1

The members of the project team are:

• Joshua Albers: doser case design
• Paula Jo Belice: Clinical study design
• Jon Chambers: doser case design and app graphics
• Steve Conner: doser electronics design and implementation
• Brent Grossman: Android app implementation
• Robert Kenyon, PhD: Project design and oversight
• Jason Leigh, PhD: Project design and oversight
• Giselle Mosnaim, MD: Project and clinical study design and oversight
• Bala Rajan: Android app and server software implementation

Note that this project began as a class project for CS 594, Human Augmentics, in the
Spring Semester of 2012 at UIC.

 	

 4

Project	
 System	
 Design	
 and	
 Structure	

The project system consists of 3 primary components:

• The case and electronics attached to the inhalers used by asthmatic study
participants (henceforth referred to as “doser”)

o Two for each participant—one for the inhaler that’s used on a daily
schedule (i.e., the inhaled corticosteroid, or “ICS” inhaler), one for the
emergency inhaler (i.e., short-acting beta agonist or “SABA” inhaler) used
during asthmatic distress situations

o Records time and date of each inhaler use (the former henceforth
referred to as “timedatestamp”, the latter “puff”) and sends that
information to the Android app

• The Android app running on the cellular phone given to each participant
o Main screen

 Avatar on a basketball court. Avatar moves from the middle of the
court towards the basket each time the participant uses their ICS
inhaler

 Scoreboard showing defined inhaler schedule adherence levels
achieved for the current week, last week, and for the duration of
the study

o Trading card screen
 One stats table showing the participant’s inhaler use counts for

the current day, current week, and the duration of the study,
alongside the numbers for the top performing participant in each
category

 A second stats table showing the number of weeks the participant
has achieved each adherence level (as described above for the
scoreboard section of the main screen)

o Avatar customization screen—facial hair, glasses, and head hair can be
added to the avatar here

 Icons for selecting one of the three categories is at bottom of
screen

 Upon selecting a category, available items in that category appear
in a scrolling list on the left side of the screen; touching on any
item adds it to the avatar and removes any previously selected
item in that category

o Survey screen: used by clinical project personnel to set parameters used
by app and transmitted to server for tracking

o Sync mode screen: used by project personnel to set date and time of
doser electronics

o Background service
 Receives, via Bluetooth, timedatestamp from inhaler component

and stores that in file on phone
 Transmits, over Internet, timedatestamp and other information to

server each time timedatestamp is received
 Causes main screen of app to come to foreground on phone and

animation to be initiated when timedatestamp from ICS inhaler
received

• The server to which data from the app will be sent for analysis and long-term
storage

 5

o From each participant’s Android app, receives and stores time and date
information sent each time the app receives this information from a doser,
for analysis, and possible intervention with participant, by clinical
members of project

o From among all participants, calculates top performing participant, based
on adherence to expected inhaler usage, for current day, week, and
duration of study, and transmits that back to the Android app on each
participant’s phone

o Most of the server programming was performed by Bala Rajan.

Figure 1: Overall Project System Interaction Diagram

Doser&

Android&app&

Server&

Time&

Puff&&
4medatestamp&

Clock&sync&
4medatestamp&

Puff&
4medatestamp&
+&addi4onal&
data&OR&&

phone&status&

Top&
par4cipant&

data&

•  Main&screen&anima4on&performed&
•  Timedatestamp&wriBen&to&file&
•  Scoreboard&and&Trading&Card&updated&

Bluetooth&connec4on&

TCP/IP&connec4on&

•  Top&par4cipant&scores&calculated&
•  Timedatestamp&+&addi4onal&info.&saved&

to&file&in&cloud&loca4on&for&easy&access&

•  Puff&taken:&
•  Timedatestamp&sent&to&app&or&

stored&for&later&transmission&

 6

App	
 Implementation	

The app was developed in the Eclipse integrated development environment with the
Android Development Toolkit (ADT) and other Android Plug-ins, as well as the EGit
plugin allowing for connection to and updating of Git repositories, installed in it, as well
as the Android Software Development Kit (SDK) for Android 2.3. The app has been
tested primarily on Samsung Galaxy Player 4.0 devices, running Android 2.3. All code is
in a GitHub repository (https://github.com/hgross4/Asthma-Intervention).

The app consists of the following classes:

Accessory extends the Android ImageButton widget class. It’s used to load and allow
for the selection of accessories in the avatar customization screen. It was written entirely
when this app was still part of a class project for CS 594.

AcraCrashReport extends the Android Application class, the latter being a base class
that provides a means to maintain global application state information and other
variables and methods that may be needed across classes. This class serves that
function in this app with methods and variables that are used to keep track of whether
the app is in sync mode, and also by providing a static instance of itself that can be used
as an Android Context instance throughout the app in classes that don’t have their own.
This class is also responsible for sending crash report information to a Google Drive
spreadsheet when the app crashes on a device that’s connected to the Internet. This is
accomplished through a library added to the project, acra-4.2.3.jar.6

AsthmaAppActivity extends the Android Activity class. It’s associated with the
avatarpage xml layout file, i.e., is the code behind the main activity (screen) of the app. It
instantiates an AvatarView object which contains the avatar, basketball, and ball-shadow
bitmaps. Through this object it initiates the animation of these bitmaps. This class
receives an Android Intent from the BluetoothService class when it receives a
timedatestamp from a doser, at which point it initiates the animation of the avatar, ball,
etc. as well as code to determine the levels achieved and to display in the scoreboard
area at the bottom of the screen. It also receives Android alarms that trigger it to display
messages in dialog boxes, designed to encourage or remind the participant about his
inhaler usage. This class also queries the AIRNow web site to determine and display air
quality information at the top of the screen.7 The air quality functionality was mostly
developed as part of the class project. Touching on the dedicated Android menu button
while viewing the main screen brings up a menu from which one can navigate to the
app’s survey or sync mode screens. Bala Rajan handled the drawing of the scorecard
heading images.

AvatarCreator extends the Android Activity class. It’s associated with the editor xml
layout file, i.e., is the code behind the avatar customization activity (screen) of the app.
This class also instantiates an AvatarView object that displays the bitmap of the avatar
and selected accessories, as well as instantiations of Accessory objects to display the
accessory bitmaps the participant can choose for his avatar. Most of the code for this
class was created for the CS 594 class project, and modified very little since then.

AvatarView extends the Android SurfaceView class, which provides a canvas for
drawing on the screen. The AvatarView class is used to generate the avatar and

 7

associated images in three of the screens that make up the user interface: the main,
trading card, and avatar customization screens. It also creates the animation of the
avatar, ball, etc. on the main screen, through loops which draw the images in increments
along a path of motion, and play sounds at different points in the animation,
corresponding to the situation onscreen (e.g., a cheer when a basket is made). Bala
Rajan did the initial investigation into how to animate the bitmaps, and collaborated in
the creation of the state structure used to keep track of the positions of all bitmaps.

BluetoothService extends Android Service. It was adapted from the BluetoothChat
sample app that accompanies the Android SDK. It will run on boot up of the phone or
when the app is started, so that it’s always running, unless the app is terminated. It is set
to run as a foreground Service, which means that it’s “survival” takes precedence over
non-foreground processes when Android needs to kill processes to reclaim memory.
Originally written to actively establish a connection with the doser, by looking for and
attempting to connect to it every five minutes, it now acts as a passive server, waiting
for a doser to establish connection and send a timedatestamp. When a timedatestamp
is received from a doser, it writes that information, along with other information tracked
by the app, to a file in the directory on the SD card designated for the app by Android.
This class also sends this information to a server, tron.evl.uic.edu, which stores it in files
that can be accessed and analyzed by project team members.
A complete description of the information stored and transmitted with each
timedatestamp received is as follows:

• Participant ID (5 digit) (from app survey screen)
• 10-digit phone number (read from phone by app)
• Doser type: “ICS” or “SABA” (received from doser)
• Dose date-time: MM/DD/YYYY~hh:mm:ss (received from doser)
• Date-time dose received on phone: MM/DD/YYYY~hh:mm (read from phone by

app)
• GPS location (location of phone when it receives data from doser, which may

NOT be the location when the dose was taken, determined by app from network
and GPS information on phone)

• Air quality information (from AIRNow.gov)
• ‘t’ if dose taken within acceptable time window and does not exceed total doses

expected to be taken within that window (calculated by app by comparing
timedatestamp from doser to dose times entered in survey screen), ‘f’ if those
criteria are not met, and ‘s’ if dose received while app is in sync mode

• Number of doses taken so far today
• Number of doses taken so far this week
• Number of doses taken for the entire duration of the study so far
• Number of inhaler puffs per dose the participant is expected to take

Dose information transmission example:
12474~17735555555~ICS~11/15/2012~17:27:39~11/15/2012~17:27~41.87~-
87.65~location unavailable~t~3~17~39~two
When there are no timedatestamps to communicate, phone status is instead sent to the
server, so that project personnel can confirm that the phone is in the state it needs to be
in to function properly for the project. This information consists of participant ID and
whether Bluetooth is enabled on the phone.
The BluetoothService class also broadcasts timedatestamp information to the
AsthmaAppActivity class for the initiation of the avatar animation, as well as the
calculation of scores for the main and trading card screens. When the app is in sync

 8

mode, timedatestamp information is sent to the SyncMode class for display there.
BluetoothService also sends and acknowledgement back to the doser from which the
timedatestamp initiated, in the form of date and time, which the doser uses to set its own
clock. It also receives acknowledgment from the Tron server, in the form of top scorer
information, which is displayed on the trading card screen.

BluetoothStartupReceiver extends Android BroadcastReceiver. It receives the boot
broadcast Intent from Android when the phone boots up. It is also called by
AsthmaAppActivity when it starts. This class starts the BluetoothService Service and
also creates several AlarmManager alarms: one for each of the different messages
displayed to the participant in AsthmaAppActivity (inhaler use reminders, etc.), one at
midnight each night to trigger the reset of the avatar’s position on the main screen and of
the trading card scores for the day (and the week, when a new week begins), and one to
trigger the communication from the app to the server (every hour to communicate dose
information or phone status).

MessageService extends WakefulIntentService from the CWAC-
WakefulIntentService.jar added to the project.8 MessageService is called by
BluetoothStartupReceiver when the latter receives the alarms it created (see the
description for BluetoothStartupReceiver above). MessageService creates the Intents
necessary for the action associated with each alarm, or, in the case of the hourly
communication with the server, calls the responsible method directly.
WakefulIntentService is used to ensure that the phone does not go to sleep before the
work initiated by this class is completed.

ScrollButton extends Android ImageButton. It’s used by AvatarCreator for the
displaying and toggling of accessory images in the avatar customization screen. It has
not been changed since it was created fro the CS 594 class project.

SurveyActivity extends Android Activity. It’s associated with the survey xml layout file,
i.e., is the code behind the survey activity (screen) of the app. The survey is where
project personnel, principally clinical ones, will enter information about participants and
their medications. Some of this information is used by the app to do calculations for
scoring and other purposes, and some is just for identification and tracking purposes.
The survey screen is password protected so that participants cannot access it.
Information entered in the survey is saved in a text file and SharedPreferences, and
reloaded into the screen fields upon revisit, so that what’s currently stored can be
reviewed.
The following fields are present in the survey:

• Participant ID
• Participant Age
• Avatar Name
• Study Start Date
• ICS Medication Name
• ICS Medication Dosage
• ICS Puffs per Dose
• ICS First Dose Time
• ICS Second Dose Time
• SABA Medication Name
• SABA Medication Dosage

 9

• SABA Puffs per Dose
• SABA Frequency
• Shot Probability % (allows project personnel to set the likelihood that a basketball

shot on the main screen will go in the basket or not)

SyncMode extends Android Activity. It’s associated with the syncmode xml layout file,
i.e., is the code behind the syncmode activity (screen) of the app. Sync mode is used for
setting the clock on the dosers, as indicated above. When in sync mode, a
timedatestamp from a doser causes the app to transmit the phone’s time and date back
to the doser, for it to use to set its clock. Sync mode has a very minimal interface, with
just a large field for displaying the timedatestamp from the doser and an exit button.

TradingCard extends Android Activity. It’s associated with the tradingcard xml layout
file, i.e., is the code behind the trading card activity (screen) of the app. TradingCard
does much of the calculating for the scores displayed on the trading card screen (though
some are done in AsthmaAppActivity) and is responsible for the display of all stats on
that screen. It also has a BroadcastReceiver for the Intent for resetting scores at
midnight each night. Bala Rajan did the programming for some of the images on this
screen.

Figure 2: App component interaction and data flow

Dose,&demographic,&air&&
quality,&etc.,&info.&to&server&BluetoothService&

Phone&
boot&up&
or&app&
launch&

AvatarCreator&&
(avatar&&
customizaAon&&
screen)&

AvatarView&

TradingCard&&
(trading&card&&
screen)& AvatarView&

Alarm
s&

BuFon&

Timedatestamp&
from&doser&

BuFon&

App&
launch&

OpAons&
menu&

SyncMode
(sync&mode&
screen)&

Re
m
ind

er
s/&

da
ily
&re
se
ts&

BluetoothStartupReceiver&

SurveyAcAvity&
(survey&screen)&

AsthmaAppAcAvity&&
(main&screen)&

AvatarView&

Daily&
resets&

MessageService&

 10

Results	

The following is a detailed description of the functioning of the Asthma Intervention
Android app. When the app is launched from the phone home screen via its icon, its
main screen (avatarpage.xml layout and the program code behind it, AsthmaAppActivity)
is launched and presented. The main screen program code causes the launch of
BluetoothStartupReceiver, which sets several alarms for time-based functions of the
app, and also starts up BluetoothService, the Service that receives data from the dosers,
initiates animation in the main screen, updates the scoreboard on the main screen and
the trading card, and transmits data to the server.

Before any timedatestamps have been
sent to from a doser, the app main screen
is in its initial state, with the avatar in
center of the screen horizontally, at the
closest point on the basketball court, and
not customized in any way.

This is how the trading card initially looks.

 11

This is the survey screen in its initial state.
The key fields for the functioning of the app
are “Number of Puffs per Dose”, which
affects the animation on the main screen,
determines when a participant has taken a
full dose of medication, and has to be
taken into account when calculating scores
on the trading card screen; and the two
“Dose Time” fields, which are used to
determine whether puffs taken are within
the accepted time frames, according to the
schedule determined by the participant’s
physician.

 12

When the participant takes a puff from his
ICS inhaler, the avatar moves to the next
position on the court and the participant is
prompted to shoot the basketball by touching
it. Use of the SABA inhaler does not initiate
the animation nor contribute to the scoring in
the app in any way.

There are a total of four positions from which
the avatar can shoot, each one closer to the
basket than the last. A participant who takes
two puffs per dose will shoot from all four
positions (two in the morning and two at
night). A participant who takes one puff per
dose will only shoot from the second and
fourth positions, with the avatar moving
through the first and third positions after the
first and second puffs of the day,
respectively. Participants who take three or
four puffs per day (planned though not
implemented as of the writing of this report)
will take additional shots at the fourth
position. At midnight the avatar returns to the
initial position; any shots not shot in the
previous day cannot be shot in the new one.

The probability of a made shot is set in the
survey screen (not depicted above), and is
not under the control of the participant, nor
does it affect any of the scoring in the app
(which is all determined by inhaler use). If
the shot is made, the screen looks as
follows. A cheering sound is also played.

 13

A missed shot looks as follows. It’s
accompanied by a sound of sympathy from
a crowd (i.e., an “aw” sound).

If the participant has taken a second puff
before launching the basketball shot, the
app will wait for the first shot to be taken,
and then, once the dialog box indicating
that the shot has been made or missed
has been dismissed by touching “OK”, the
avatar will immediately move to the next
position on the court and wait for the
participant to touch the ball to shoot again.

For each full dose (determined by the
number of puffs per dose entered in the
survey) the participant takes, he is
awarded $.50, which is added to his score
on the trading card. Thus, after 1 full dose,
the trading card screen will look as
depicted at right.

The Top Scorer column displays stats from
the server to which all participant phones
send their data. Each time a puff is
received by the app, or every hour in the
absence of puffs, the app communicates
with the server. The server responds by
calculating which of all recipients has the
highest score in each category, and sends
that information back to the app, which
then displays that information in the Top
Scorer column. If a given participant has
the top score in any category, an icon
indicating this displays in the upper right
corner of the screen.

 14

The scoreboard at the bottom of the main
screen shows the participant’s adherence
to his ICS inhaler use schedule for the
current week, past week, and his best
week. It’s calculated by dividing the
number of puffs (not doses) taken during
the week in question by the number
expected for that entire week, then
comparing the resulting number to ranges
set for each level (high school, college,
and pro) by the project team. The ranges
are as follows:

High school: >= 60% and < 70%
College: >= 70% and < 90%
Pro: >= 90%

As an example, a participant who takes
two puffs per dose is expected to take 28
puffs in a week (2 puffs per dose X 2
doses per day X 7 days in the week). If, by
the end of the day on Friday of the current
week, the participant has taken all but four
of his puffs, for a total of 20 puffs, he will
have taken approximately 71% of his puffs
for the week, and will thus have reached
the college level for the week.
For a participant who has reached the high
school level for the week, and whose best
week is the high school level, the
scoreboard looks as depicted at right.

The trading card also displays information
about weekly level attainment, showing
how many weeks the participant has
performed at each level.

 15

If a participant attempts to take more than
his prescribed number of puffs for his dose
time window (defined as two hours before
and two hours after the two dose times
entered in the survey), those puffs are not
counted toward his level on the main
screen scoreboard nor in the Dose Score
on the trading card and a message
appears on the main screen.

If the participant attempts to take any puffs
outside of his dose time window, these
puffs are also not toward his scoreboard
level or Dose Score, and he sees the
following message on the main screen.

 16

The avatar customization screen is
accessed via a button on the trading card.
Before any customizations have been
applied to the avatar, it looks as follows.
The three icons at the bottom of the screen
are used to select between the three
categories of accessories, and accessories
are applied by touching on an item in the
column on the left side of the screen. Items
can be removed by touching on the blank
space at the top of that column. Only one
accessory from each category can be
applied at a time. (Touching on an
accessory in a category causes that
accessory to replace any that was already
on the avatar.)

Here’s how the avatar looks after applying
an arbitrary combination of accessories
from all three categories. The avatar will
appear thus accessorized in all three
screens on which it appears.

 17

The sync mode screen is accessed from
the main screen via the dedicated device
menu button. This menu also provides
access to the survey (via “Accounting
stuff”, a phrase chosen because the
participants are expected to find it
uninteresting), both of which are protected
by the same password, so that participants
do not access these screens. Also showing
at right in the menu is “Dev param”, which
is used to change variable values in the
app without having to change program
code and reinstall the app, for testing
purposes. This menu item will be removed
from the app before the participants begin
to use it.

The sync mode screen is shown at right.
Puffs received while in this mode are
recorded in the file on the phone with all
other puff entries and sent to the server,
but these puffs have no effect on scoring
or animation within the app. As with puffs
received outside of this screen, the app
responds to the doser by sending the
phone’s date and time.

 18

Conclusion	

There is still work to be done before this app can be called complete. A few elements, as
noted above, have yet to be implemented.

Though some informal testing has been done as part of the construction of the app,
more testing still needs to be done. Within a week or two of the writing of this report, this
testing is scheduled to commence. The plan is to try to simulate the in-study use of the
app by having members of the project team and some of their associates in the
Electronic Visualization Laboratory carry dosers and phones with them and take puffs
throughout the day as the study participants are expected to do. This will inevitably result
in the discovery of bugs, and likely design features of the app that will be deemed less
than satisfactory and thus may need to be changed.

Also, the phone that will be used for the study has not been chosen yet, so problems as
a result of the way the app behaves on the device on which it will ultimately be used may
manifest. Related to this, a major implementation flaw that’s been discovered is that the
interface of the app does not properly display on phones that have different resolutions
than the Galaxy Player. For that reason, candidates for the phones for the study have
mostly been limited to those that have the same resolution as the Galaxy Player, but this
is a limitation that will likely need to be addressed in the future.

The robustness of the app is a concern. Crashes have occurred during the informal
testing of the app, and while many of the causes of these have been addressed (e.g.,
memory overuse due to the size of the bitmaps in the app), some (e.g., exceptions
caused by some sort of problem with the Samsung Player’s Bluetooth) may yet prove to
be a problem.

Much of the challenge of the implementation of the app likely arose from the lack of
knowledge of the Android platform on the part of the author of this report and the other
project members. The platform is still relatively young, and good resources for those
trying to learn it are fairly scarce. Though the programming language used is Java and
XML, and thus not unfamiliar to the author and other team members, the platform does
have some notably unique characteristics and constructs. Some of the ones at issue in
this project were:

• The Activity lifecycle, i.e., how the different interface components of an app
behave over time, in response to navigation by the end user, and as a result of
the constraints that the operating system imposes (e.g., memory reclamation).
An example of this is the difference in how Android responds to the use of the
dedicated device back button vs. the dedicated home button. Pressing the first
from the main screen of an app causes the main Activity to be destroyed (and
thus results in it being recreated when the user switches back to it); pressing the
latter does not.

• Related to the first item are the means and resources for the management and
recreation of app states in response to lifecycle changes. For this project in
particular, SharedPreferences were used to maintain necessary state
information, but this was a choice made in ignorance of an Activity feature called
the savedInstanceState, which is specifically designed for this purpose.

• The use of Intents for communication between different program classes. There
are many flavors of Intent, and which to use and why is a bit of an art. Also

 19

knowing what happens to an Intent when it’s sent from one component to
another is important—Intents can tend to stick around and be acted on more than
once by an activity, but this is generally not desired. Particularly challenging for
this project was getting the main screen to come to the foreground whenever a
puff was received from the doser. This behavior is actually frowned upon
generally in Android app design, because the assumption is that people do not
want their apps popping up no matter what they happen to be doing on their
phones—this can be an annoying interruption. The desire for this project, though,
is for the app to be strongly persuasive and thus be aggressive in presenting
itself to the participants. Bringing the main screen to the foreground whenever a
puff is received was not a huge technical challenge, but what was difficult was
realizing that every time this happened the main screen was getting recreated,
without the previous instances of it being destroyed, thus causing the phone to
run out of memory. The solution was a change to the Android manifest file to tell
Android to try to limit the main screen (also ultimately used for the other screens
that contain the avatar bitmap, too) to one instance at a time, and an addition to
the “bundle” accompanying the Intent that launches the main screen.

• Animating the avatar, his ball, and the ball’s shadow. Though animation tools
exist in the Android API9, animating everything with loops in which in each
iteration bitmap positions were incrementally updated and the bitmaps redrawn,
was ultimately selected as the animation approach.10

Other ways in which the app could probably be improved include:

• The breaking up of some of the larger classes. AvatarView and BluetoothService
in particular have a lot of code in them, and figuring out which parts of the code
are doing what would likely be a challenge for an outsider (though attempts were
made to include copious comments). In addition to making collaboration more
difficult (because fewer classes mean a greater likelihood that two developers
with different tasks would still have to work in the same class), the shear
intimidation factor of touching these large and complex classes may be an issue,
at least for novice programmers. AvatarView, in addition to serving to provide the
means to draw the avatar and other bitmaps in different screens, also handles all
of the animation on the main screen. Though how to separate these functions
admittedly doesn’t seem obvious the author at this point, still seems appropriate
or at least worthy of consideration.

• The handling of the “business logic” of the app. There are a lot of dependencies
within, and timing expected of, the app (e.g., alarms to go off at certain times,
certain actions on the part of the user to have certain results at some times but
different results at others). Unfortunately, as this logic was built, its
implementation was scattered throughout several classes, mostly
AsthmaAppActivity, BluetoothService, BluetoothStartupReceiver,
MessageService, SurveyActivity, and TradingCard. The means of recording and
accessing the different conditions and states also varies quite a bit; in some
cases information is stored in SharedPreferences, in some cases in text files, in
others in variables, and sometimes a mixture of more than one of these. Though
bitmap positions corresponding to progress of inhaler use throughout the day are
saved in a fairly well-organized state structure, other app state information is not,
as management for different conditions has been developed in a fairly ad hoc
way for each one, with the strategy for handling each chosen on the basis of
what seemed easiest for each, not on how a coherent whole could be built and
maintained.

 20

It should be noted for those to follow on this project that the author found the following
resources most useful for learning Android programming and for sample code:

• The Busy Coder's Guide to Android Development11
• Android Developers12
• Stack Overflow13,14

The author would like to thank the other members of the project team for their
collaboration, patience with the author (especially relative to his whining and interrupting
:), for pushing to make the software more than was perhaps feared it could be, and for
general advice and counsel.

1 J. Albers, J. Chambers, B. Grossman, J. Lancaster, M. Matulyauskas, and H.
Thompson. An Avatar-Centric Smartphone App to Promote Adherence to Asthma
Treatment for Inner-City Youths. Project report for Human Augmentics course, University
of Illinois at Chicago, May, 2012.
2 Boland P. The emerging role of cell phone technology in ambulatory care. The Journal
of ambulatory care management. 30(2):126-33. Available at:
http://www.ncbi.nlm.nih.gov/pubmed/17495681.
3 Mosnaim GS, Cohen MS, Rhoads CH, Rittner SS, Powell LH. Use of MP3 players to
increase asthma knowledge in inner-city African-American adolescents. International
journal of behavioral medicine. 2008; 15(4): 341-6. Available at:
http://www.ncbi.nlm.nih.gov/pubmed/19005935. Accessed April 22, 2012.
4 Ruiz JG, Andrade AD, Roos BA, Twain M. Medical Avatars—An Innovative Approach
to Fostering Health Promotion and Lifestyle Change. Federal Practitioner. 2012;(April):
1-7.
5 McGonigal J. Reality is Broken: Why Games Make Us Better and How They Can
Change the World. London: Penguin Books; 2011.
6 http://acra.ch/
7 U.S. Environmental Protection Agency Office of Air Quality Planning and Standards.
AIRNow Local Air Quality Condtions. Available at: http://airnow.gov/.
8 https://github.com/commonsguy/cwac-wakeful/downloads and
http://commonsware.com
9 http://developer.android.com/guide/topics/graphics/index.html
10 Deitel P., Deitel A., Morgano M., Android for Programmers: An App-Driven Approach,
First Edition, Prentice Hall, 2012, Chapter 7.
11 Murphy, M., The Busy Coder's Guide to Android Development, CommonsWare, 2012.
12 http://developer.android.com/index.html
13 http://stackoverflow.com/
14 http://stackoverflow.com/questions/12607395/alertdialog-persisting-on-screen-too-long

